

Motivation

- Get superpixels with extraordinary boundary adherence (BR, MDE)
- Reduce input parameter dependencies (initialization, termination)

Key Idea

Assumption: Color histogram clusters correspond to object classes

<u>Usage</u>: Separate object classes by color intensity thresholding at histogram cluster boundaries across multiple color channels

<u>Progression</u>: Hierarchically split color-inhomogeneous segments into more homogeneous ones (until color information exhaustion)

Hierarchical Histogram Threshold Segmentation Thomas V. Chang, Simon Seibt, Bartosz von Rymon Lipinski

Challenges

- Where to threshold? \rightarrow 1D Laplace filter & equal partition weights
- What segments to prioritize? \rightarrow segment size & color variance
- When to stop? \rightarrow color information exhaustion / superpixel count
- How to handle tiny segments? \rightarrow min size & spatial connectivity

Thresholding

- A threshold should equally split an image at object class boundaries
- 1D Laplace kernel to find limits of object classes in a color histogram
- Cauchy distribution of accumulated histogram for a balanced partition

Application

Refine semantic masks (e.g., Segment Anything Model – SAM)

SAM mask

Federal Ministry of Education and Research

Funding

Equal partition weights Threshold applicability

+ HHTS refinement

Experiments

SEEDS

CRS - HHTS

Superpixels	Method	UE	BR	ASA	EV	CO	BP
250	SH	0.0970	0.8080	0.9510			
	HHIS	0.0668	0.8502	0.9332			
600	SCAC	0.0680	0.8260	0.9660	0.8750	0.4420	
	HHTS	0.0373	0.9326	0.9627	0.8989	0.1215	
1000	VSSS	0.0324	0.9188	0.9676	0.9123	0.1953	
	HHTS	0.0307	0.9626	0.9693	0.9100	0.1411	
1200	APENet		0.9204	0.9758			0.1878
1000*	HHTS		0.9626	0.9693			0.0744
1300	LDFUNet	Ĩ	0.9300	0.9734			0.0996
1000*	HHTS		0.9626	0.9693			0.0744
2000	CRTREES	0.0716	0.9624		0.9482		
1000*	HHTS	0.0307	0.9626		0.9100		

ETPS

HHTS

ERGC - HHTS

-D-HHTS ----ETPS ----SEEDS —ERS ---ERGC